Properties of the multiorbital Hubbard models for the iron-based superconductors
نویسندگان
چکیده
A brief review of the main properties of multiorbital Hubbard models for the Fe-based superconductors is presented. The emphasis is on the results obtained by our group at the University of Tennessee and Oak Ridge National Laboratory, Tennessee, USA, but results by several other groups are also discussed. The models studied here have two, three, and five orbitals, and they are analyzed using a variety of computational and mean-field approximations. A “physical region” where the properties of the models are in qualitative agreement with neutron scattering, photoemission, and transport results is revealed. A variety of interesting open questions are briefly discussed such as: what are the dominant pairing tendencies in Hubbard models? Can pairing occur in an interorbital channel? Are nesting effects of fundamental relevance in the pnictides or approaches based on local moments are more important? What kind of magnetic states are found in the presence of iron vacancies? Can charge stripes exist in iron-based superconductors? Why is transport in the pnictides anisotropic? The discussion of results includes the description of these and other open problems in this fascinating area of research.
منابع مشابه
Exotic magnetic order in the orbital-selective Mott regime of multiorbital systems.
The orbital-selective Mott phase of multiorbital Hubbard models has been extensively analyzed before using static and dynamical mean-field approximations. In parallel, the properties of block states (antiferromagnetically coupled ferromagnetic spin clusters) in Fe-based superconductors have also been much discussed. The present effort uses numerically exact techniques in one-dimensional systems...
متن کاملMott transition in modulated lattices and parent insulator of (K,Tl)(y)Fe(x)Se(2) superconductors.
The degree of electron correlations remains a central issue in the iron-based superconductors. The parent iron pnictides are antiferromagnetic, and their bad-metal behavior has been interpreted in terms of proximity to a Mott transition. We study such a transition in multiorbital models on modulated lattices containing an ordered pattern of iron vacancies, using a slave-rotor method. We show th...
متن کاملManipulation of gap nodes by uniaxial strain in iron-based superconductors.
In the iron pnictides and chalcogenides, multiple orbitals participate in the superconducting state, enabling different gap structures to be realized in distinct materials. Here we argue that the spectral weights of these orbitals can, in principle, be controlled by a tetragonal symmetry-breaking uniaxial strain, due to the enhanced nematic susceptibility of many iron-based superconductors. By ...
متن کاملMagnetic correlations and pairing in the 1/5-depleted square lattice Hubbard model.
We study the single-orbital Hubbard model on the 1/5-depleted square-lattice geometry, which arises in such diverse systems as the spin-gap magnetic insulator CaV4O9 and ordered-vacancy iron selenides, presenting new issues regarding the origin of both magnetic ordering and superconductivity in these materials. We find a rich phase diagram that includes a plaquette singlet phase, a dimer single...
متن کاملS4 Symmetric Microscopic Model for Iron-Based Superconductors
Although iron-based superconductors are multiorbital systems with complicated band structures, we demonstrate that the low-energy physics which is responsible for their high-Tc superconductivity is essentially governed by an effective two-orbital Hamiltonian near half filling. This underlying electronic structure is protected by the S4 symmetry. With repulsive or strong next-nearest-neighbor an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011